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a b s t r a c t

This article presents howvarious on-site and remote computing resources are combined into a framework
to support teaching parallel and distributed computing (PDC) at the undergraduate level. The combination
of these resources enables the delivery of PDC programming, system, and architectural concepts via a
browser-based common interface (JupyterHub) and a single programming environment (Python and its
supported libraries). This also allows lecturers and students to focus more on the principles of PDC and
less on the technicalities of native languages for different platforms.We describe how this framework can
support a comprehensive set of PDC course modules, including lectures, assignments, and projects, for a
full semester junior-level class. Adoption of this framework in various teaching environments at Clemson
University has received positive feedback from both instructors and participants.
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1. Introduction

Parallel and distributed computing (PDC) has become integral
to various aspects of IT across all academic disciplines and in-
dustrial areas. It is critical that college graduates are properly
introduced to PDC core concepts and technologies for their future
careers. The existing body of PDC knowledge spans across four
different areas: Data Structures and Algorithms, Software Design,
Software Environments, and Hardware [8]. A traditional Beowulf-
based computing cluster [40], available through either on-site or
public resources, can adequately provide a classroom computing
environment for this knowledge, as shown in Fig. 1.

However, there remains a number of issues in working within
this environment. First, interactions with computing clusters are
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typically done through a Linux-based command line interface (CLI).
Terminal tools to support these interactions are available by de-
fault on Linux and Mac, but not on Windows. A portion of the
class time must be spent on ensuring that all students can access
the computing infrastructures. This necessitates that instructions
and technical support for Linux and Mac terminals, and terminal
emulators for Windows (e.g., PuttY or SSH Secure Shell) need to
be prepared. The second issue arises from the need to include
various new technologies in the curriculum as PDC moves beyond
the traditional high performance computing concepts and into
areas of data-intensive computing, big data analytics, and large-
scale streaming systems. This leads to an increase in the number
of computing tools and platforms that need to be taught together
with the corresponding PDC concepts. To deliver this expanding set
of new PDC concepts and enable students to have adequate hands-
on practice within the limited class time, instructors will need
to face in-class technological issues that will most certainly arise
fromworkingwith these various tools and platforms. Furthermore,
while most of these new platforms support Java, a commonly
taught language within the core curriculum, the code complexity
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Fig. 1. A traditional classroom computing environment for teaching PDC concepts.

is significant. For example, the well-known Hadoop MapReduce
WordCount program [1] requires fifty five lines of Java code. Out
of these lines, only ten are directly related to the MapReduce pro-
gramming portions, while the remaining forty five include library
imports, class and function declarations, and standard job configu-
rations. In both formal and informal educational settings, explana-
tion of these lines present significant timing overheads during the
hands-on practice segments of the lectures. They distract learners
from programming paradigms and workflow designs, which are
more important aspects of the learning process. In many cases,
they require instructors to spend valuable class time for trouble
shooting and technical support.

In this paper, we describe our approach at Clemson Univer-
sity in addressing these issues by unifying on-site and remote
computing resources, access platforms, and programming tools
into a common PDC educational framework. This framework is
shown in Fig. 2. To support the traditional PDC concepts, we utilize
Clemson University’s research cluster, the Palmetto Supercom-
puter (Palmetto). For advanced PDC concepts, educational mod-
ules are developed using CloudLab, a public research computing
testbed [37]. To combine these two resources, we deploy and
integrate JupyterHub as the front-end for Palmetto. JupyterHub
allows users to spawn Jupyter server, a platform that provides con-
venient access to computing environments for high performance
computing, big data, and data intensive computing infrastructures.
With Jupyter’s ability to support a diverse set of programming
languages, a browser-based terminal, and a text editor, students
can be introduced to PDC through a standardized browser-based
interface across different operating systems. The browser-based

terminal also allows students to seamlessly interact with CloudLab
from Palmetto.

The default language for JupyterHub Notebooks is Python. The
availability of various community-supported Python libraries for
PDC allows instructors to teach PDC concepts from different plat-
forms without having students learn the various native languages
of these platforms. As a result, students can spend more time
understanding PDC concepts and less time on syntax correctness
of specific tools and languages. This facilitates the instructional
delivery of the most common PDC areas such as high performance
computing, data-intensive computing, and in-memory distributed
computing, which were originally designed for different comput-
ing platforms using different languages. With the popularity of
Python and the variety of Python libraries/APIs that support paral-
lel and distributed programming, there exists a number of tutorials
and teachingmaterials for PDC using Python. Examples include the
exhaustive tutorial for Python and MPI by the creators of mpi4py
[12] or the framework to teach MapReduce programming via a
web browser [17]. Our frameworkwill further extend the ability to
utilize Python to teach PDC by developing Python-based learning
modules on a common and consistent interface, the Jupyter note-
books.

The unified educational framework for PDC presented in this
article will enable important aspects of teaching PDC [21] such
as showing speedup, real time results, visual results, interactiv-
ity, active learning, reproducibility, and accessibility. All resulting
educational modules are available online. The remainder of this
paper is organized as follows. Section 2 describes Palmetto and
CloudLab, the on-site and remote computing resources, as well as
the design and deployment of JupyterHub on Palmetto. Section 3
contains three topics. First, We discuss previous work that used
Python in PDC education. Second, we describe course modules
that use Jupyter and Python to teach high performance computing,
data-intensive computing, and in-memory distributed computing
concepts. Third, we show how the course modules can combine
CloudLab, Jupyter, and Python in teaching advanced topics such as
distributed system architectures, schedulers, and distributed file
systems. Section 4 describes user evaluation of this unified edu-
cational computing framework from participants in various work-
shops and students from a class that teaches high performance and
data-intensive computing. The evaluation includes performance
observations and feedback from students and instructors who use
the platform. Section 5 concludes the paper and discusses future
work.

2. Unifying computing resources and access platforms

It is typical for PDC to be primarily taught as a single course
within the entire undergraduate CS curriculumwhile having some
PDC concepts embedded in other courses [9,42]. At Clemson Uni-
versity, PDC education is delivered through two settings, formal
academic courses and informal half/full-day training workshops.

The PDC academic course is CPSC 3620, a computer science
course on the topic of distributed and cluster computing. This
course is taught in fifty-minute classes three times a week. While
this is a required junior-level course, most students in the class
wait until the first or second semester of their senior year before
taking the course. The enrollment of the class ranges between 40
and 45 students. The course is intended to present students with a
broad overview of PDC. The topics covered include distributed file
systems, themessage-passing programming paradigm, scheduling
on a cluster of computers, big data and data-intensive computing,
the map-reduce programming paradigm, in-memory distributed
computing, cloud computing, message-oriented middleware, and
distributed stream processing [28].
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Fig. 2. A unifying classroom computing environment that supports a variety of infrastructures for teaching PDC concepts.

At Clemson University, the Cyberinfrastructure and Technology
Integration group (CITI) also offers regular concentrated half/full-
day training workshops teaching PDC to researchers and graduate
students engaging in research activities that require advanced re-
search computing infrastructures. The workshops focus on hands-
on skills that quickly familiarize participantswith using PDC, while
fundamental concepts are only covered when necessary. Exam-
ples include working with Linux environments, interacting with
research computing resources, developing parallel programs, and
working with Hadoop/Spark big data infrastructures. Workshop
materials are designed to be self-paced [11].

In both cases, the amount of content that needs to be delivered
in each session is significant. It is critical to minimize the technical
hurdles for students and workshop participants in their interac-
tions with various computing resources when learning about PDC.
To accomplish this goal, we develop our course modules around
the unifying computing framework which includes one on-site
computing resource, one remote public research cloud environ-
ment, and a browser-based access platform.

2.1. On-site computing resource: Palmetto cluster and Cypress cluster

The Palmetto Cluster (Palmetto) is a shared local high perfor-
mance computing environment available to all Clemson students,
faculty and staff as a resource for research and education. Palmetto
has beendeployed andmanagedusing a condominiummodel since
2006, with the university subsidizingmost of the costs, and faculty
contributing to the baseline cost of the computers in exchange
for priority access to Palmetto resources. Every year, Palmetto’s
computing capacity is expanded by the addition of new hardware
to the existing infrastructure. Currently, Palmetto consists of more
than 2000 compute nodes with various hardware profiles, includ-
ing computers with specialized components such as largememory
and GPU cards. Palmetto also has a 40-node Hadoop cluster named
Cypress attached to the same network. The Hadoop ecosystem is a
prime example of a significant area of interest which is ‘‘contin-
ually evolving as topics mature and even newer topics appear on
the scene’’ [33]. This is made evident by recent additional software
libraries and frameworks associated with the Hadoop ecosystem,

including cluster resource manager [2], in-memory distributed
computing [44], interactive programming [5], and distributed data
store [3]. At Clemson University, Palmetto and Cypress are set up
such that workflows can be designed to involve both Palmetto
for high performance computing tasks and Cypress for big data
analytics tasks.

Palmetto usage policy allows educational access for students. As
a result, they are able to observe examples and work on tasks that
demonstrate concepts such as speedup, efficiency, and parallel I/O.
However, since students are limited to having only user privileges
on Palmetto, these tasks are limited to primarily programming-
based assignments. It should be noted that in the absence of an
on-site centralized computing resource such as Palmetto, there
exist other public resources that can be utilized in this educational
framework. One prominent example is the Extreme Engineering
and Science Discovery Environment (XSEDE) [41]. XSEDE consists
of more than a dozen research computing sites from different
institutions across the United States in order to provide computing
resources for both research and educational purposes. Instructors
can apply for an educational allocation and distribute this alloca-
tion among their students.

2.2. Remote cloud resource: CloudLab

Built on the successes of the Global Environment for Network
Innovations (GENI) [7], CloudLab provides a robust cloud-based
environment where researchers can design and deploy experi-
ments for next generation computing research [37]. An experiment
using various computers and network topologies in CloudLab is
represented by a resource description file. Onemethod to generate
this file is to develop a Python program to describe how the
components of the experiment are to be reserved, configured, and
deployed on CloudLab hardware. As the computing components
are virtual images booted on top of bare metal infrastructures,
CloudLab users are granted complete administrative privilege over
their experiments. Similar to XSEDE, CloudLab allows instructors
to apply for educational projects and to add students to these
projects.
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Fig. 3. Design of JupyterHub’s deployment on Palmetto.

2.3. Access platform: Jupyter server

The above computing resources run various distributions of
Linux, whose main mode of access is via a SSH connection estab-
lished from a command line terminal. This presents an additional
overhead of providing impromptu instructions for students and
workshop participants who have not worked in a non-GUI Linux
environment before. While it is possible to impose a prerequisite
on having learned how to use Linux, there remains a significant
technical gap between those who just pick up the skill to satisfy
the prerequisite and those who have used Linux throughout their
academic career.We have observed students that are either unable
to keep up with class activities or frequently request assistance
from instructors.

To create a consistent environment to access these computing
resources,we turn to Jupyter server, a Python-based infrastructure.
A Jupyter server allows users to manage their files and directo-
ries, edit text files, and launch notebooks that are essentially live
documents containing executable code, visualizations, and text. All
Jupyter functions are available through a browser interface. This
provides a standard platform for all students, effectively lower-
ing the barrier to entry of working with large scale computing
resources.

At Clemson University, we deployed JupyterHub [35], a central-
ized service for users to manage Jupyter servers running on Pal-
metto’s computing resources. Utilizing JupyterHub, we are able to
develop a series of Python-based teaching materials that allow the
delivery of different aspects of PDC within the context of a single
interactive programming environmentwhileminimizing potential
technology-related timing overheads. This enables teachers and
learners to focus more on PDC concepts and less on the various
syntax and coding details. In the remainder of this section, we
will briefly describe the technical configuration for this JupyterHub
deployment.

2.3.1. Deployment design
JupyterHub is a multi-user hub for spawning, managing, and

proxying multiple instances of the single-user Jupyter notebook
(formerly IPython notebook) server. It has threemain components:
(1) a configurable http proxy, (2) amulti-user hub, and (3)multiple
single-user Jupyter notebook servers (NBS(s)). The proxy is a single
point of contact for using JupyterHub from a user perspective and
handles all remote connections coming from users’ browsers. The

proxy communicates with the hub and each active user’s NBS on
behalf of the user. Communication between users’ browsers and
the proxy is secured. The hub is responsible for authenticating
users and spawning their NBSs. The hub also configures the proxy
to forward requests for specific URL prefixes to the correct NBS.
The design of the JupyterHub deployment on Palmetto is shown in
Fig. 3.

The proxy process is accessible from the Internet by users’
browsers by running on a node dedicated forweb applications. The
hub process is run on the same node as the proxy and is configured
to interface with the batch scheduler’s client software on behalf of
users. The hub is run as a system service and the proxy process is
started when the hub service is started. JupyterHub has a modular
design that allows administrators to select the plug-ins best suited
for both the environment in which JupyterHub will be deployed as
well as the needs of the Jupyter notebook user.

By default, the hub spawns an NBS on the same physical re-
sources as the node running the hub. To enable the hub to interface
with Palmetto and its scheduler,we utilize the BatchSpawner plug-
in [35]. Using BatchSpawner, we configure the hub to spawn NBSs
as batch jobs that are submitted to the Palmetto’s scheduler.

2.3.2. User interaction
After users authenticate with the Clemson JupyterHub inter-

face, they are presented with a web form which they may cus-
tomize each time prior to spawning their NBS, as shown in Fig. 4.
This enables the users to specify their resource requirements
through nodes, cores, RAM, GPUs, etc. Job wall-time is one of the
configurable fields, and a user’s job, running an NBS, is automati-
cally deleted once the wall-time of the job has been reached. Once
the user’s job begins running, the usermay access their NBS, which
is running on a Palmetto compute node, as shown in Fig. 5.

The Jupyter interface provides many useful features: a text
editor, a terminal, the ability to traverse and manipulate a file sys-
tem, and most importantly, the notebook interface. The notebook
interface lets users create notebooks, which may contain: notes,
program code, equations, visualizations, as well as references to
images and videos that may be viewed in the notebook. The note-
book is a great environment for iterative development of programs
because it encapsulates both the code and its output in a single
notebook file. This file can be downloaded, shared, and re-played
by other users. Different programming languages are supported by
Jupyter Notebooks in the form of different kernels [34]. We have
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Fig. 4. A form enables user customizable resource requests for NBS.

successfully configured Python version 2 and 3, R, Apache Spark,
and Matlab kernels on Palmetto.

The integration of JupyterHub with Palmetto enables support
formany users to have concurrent access to distributed computing
resources in an interactive and streamlined manner. The Jupyter
Notebook interface represents a highly enriched form of an inter-
active computing environment that, when coupled with Palmetto,
lowers the barrier of entry for accessing computing infrastructures
and learning parallel and distributed computing topics.

3. PDC course modules using unifying framework’s resources

Section 2 describes the complex set of computing resources that
power the unifying framework. Various technical decisions have
beenmade in the selection and deployment of these resources. It is
difficult to map each technical decision and resource to individual
pedagogical concerns, as these decisions create impacts across
the entire educational process. In general, they follow these two
principles:

• Reduction of irrelevant technical overhead: For example, in-
stead of trying to edit files through command line interfaces,
Jupyter notebook allows students to make these modifica-
tions through a browser-based GUI, thus preventing unnec-
essary technical complications.

• Exposure of fundamental concepts: A traditional cluster of
computers allows students to observe characteristics of
parallel computations. A big data cluster allows students
to understand the benefits of data locality and bringing
computation to the data. Software-defined infrastructures
such as CloudLab allow students to be hands-on with how
different components of a distributed computing system are
deployed in production.

In the remainder of this section, we discuss how PDC modules
covering a wide range of topics are covered within this course
by leveraging computing resources of the unifying framework.
These topics are not grouped into specific areas of PDC (e.g., high

performance computing, big data analytics, and distributed in-
memory computing). Instead, the design and presentation of these
topics highlight the order inwhich advances in PDC knowledge and
technologies have arisen from relevant computing demands.

3.1. Module 1: introduction to parallel and distributed computing

This module first discusses the necessity of investing in dis-
tributed and cluster computing (scaling out) rather than upgrading
a single computer (scaling up). While there are many examples
demonstrating the needs for PDC, we choose to discuss a real life
event, Hurricane Sandy. In this discussion, we look at how the
significant weaker performance of NOAA supercomputer at that
time, compared to those of other international agencies, seems
to correlate with the inaccurate early prediction of Sandy’s path.
Next, we begin to introduce basic scaling concepts for PDC such
as speedup, efficiency, and Amdahl’s Law. The first assignment is
a writing assignment where students are required to read and dis-
cuss the Beowulf paper [40], which provides themwith definitions
and motivations regarding the traditional cluster-of-computers
model, where a cluster is built using off-the-shelf commodity
components, and large-scale computing tasks are parallelized and
separated from large-scale storage. The students are also tasked
with finding and discussing other examples of the impacts of
PDC in research and industry. The other two units of this module
introduce students to Palmetto and CloudLab, the two computing
resources that they will utilize for the remainder of the course.
After a brief overview of these resources, students will use the
Jupyter interface to practice accessing Palmetto and CloudLab.
The second assignment in this module is a minor task involving
students interacting with Palmetto and registering for accounts on
CloudLab. The third assignment introduces students to the concept
of parallel communication by completing the following tasks:

• Requesting amulti-node, multi-core allocation on Palmetto.
• Building a simple computer cluster on CloudLab such that

this cluster has as many nodes as the total number of cores
on the previous Palmetto allocation.

• Extending the Palmetto allocation script such that each in-
dividual core of the allocation contacts one node on the
CloudLab cluster and requests the full domain name.

3.2. Module 2: introduction to parallel and distributed file systems

One question from Assignment 1 specifically asks students to
identify potential bottlenecks in cluster computing as discussed
in the Beowulf paper. The correct answer includes the Beowulf
paper’s discussion on the need for a parallel file system. This allows
us to transition to the next module, which introduces students
to Parallel and Distributed File Systems. We examine concepts
such as block-based versus object-based striping, distributed locks,
andmeta-data servers. Unlike parallel programming, which can be
assessed via a programming assignment, this type of knowledge
is difficult to assess in a normal task-based assignment without
resorting to using quizzes and exams to evaluatememorization. At
this point in the semester, we instruct students to form teams for
a semester-long project, broken into multiple stages. One task of
the first stage requires each team to select one research computing
site to investigate, which can be part of XSEDE or Palmetto itself.
Each team will pick three sites, in order of preference, and write
brief documentation describing characteristics such as operating
systems, parallel file systems, and the size of the selected sites. We
then assign each team to one site from their list such that each team
has a unique site. This becomes the basis for subsequent project
stages.
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Fig. 5. The notebook is spawned on the user-allocated node.

3.3. Module 3: introduction to MPI using python

Modules 1 and 2 present students with the fundamental infras-
tructure for a traditional large-scale computing cluster. In Module
3, they are introduced to MPI, the parallel programming library
designed to take advantage of this infrastructure. Support for MPI
for Python is available through the mpi4py library, which provides
an interface to the C-based MPI-2 specification. The syntax and
semantics of this interface strongly resembles those of the original
MPI library in C/C++. The Python bindings of mpi4py allow MPI-
related PDC concepts such as pleasantly parallel, workload assign-
ments, divide and conquer, and sorting to be implemented with
less boilerplate code and fewer compilation/execution commands.
This package has been proven to be a suitable teaching tool for
parallel computing education [31,32].

One approach to enable parallel computing for Jupyter Note-
book is to use the ipyparallel extension [20]. This extension
allows users to create a cluster of processing engines, to which the
Notebook can be connected. Engines support message passing via
mpi4py, thus enabling users to write parallel programs entirely
within the Notebook. However, in the case of deadlock errors,
the process to restart ipyparallel is complex and error-prone.
Since Fall 2016, we switched to using Jupyter’s cell magic, which
allows the code written within a cell to be saved to a file, and the
‘!’ symbol, which allows users to define and execute Linux shell
commands fromwithin a notebook cell. In this case, the Linux shell
command is the command to run the Python MPI program. This
process is illustrated in Fig. 6.

Besides interactive lectures, having MPI Python code and lec-
tures inside a Jupyter notebook allows instructors to quickly elab-
orate on students’ questions. For example, in one class, we had a
student that raised a question about what can happen when the
array indices for Scatterv are not calculated properly. We were
able to demonstrate the case of memory buffers being overwritten
due to overlapping array segments, which belonged to different
MPI processes. This impromptu demonstration happened instanta-
neously bymodifying one variable and re-executing the notebook’s
cell without leaving the presentation mode.

In this specific module, students are first introduced to two
fundamental communication patterns: point-to-point communi-
cation using Send and Recv and collective communication us-
ing Broadcast, Reduce, Gather, and Scatter. Next, students learn
about common parallel workflows including pleasantly parallel
and divide-and-conquer. This module has one programming as-
signment. The students are required to process the Google Trace
Data [36] to extract and calculate counts such as number of users,
number of jobs, and number of CPU hours for each job. As the
trace data contains timestamped snapshots of the system, students
must establish communication patterns to let processes exchange
and gather all events belonging to the same job for calculation
purposes. The size of the trace data is 170 GB, thus using a multi-
core, multi-node allocation on Palmetto is required. As part of the

assignment, students must increase their allocation requests to
measure and graph speedup and efficiency. This is a large assign-
ment that takes several weeks to complete. This module is also the
basis upon which a half-day MPI introductory workshop is created
for non-computer-science participants.

3.4. Module 4: big data and data intensive computing

The large size of the Google Trace Data in Module 2’s MPI
assignment provides a pretext to illustrate the growth of interest
in big data and data-intensive computing technologies since the
early 2000s. This module presents students with the perceived
characteristics of Big Data (Volume, Velocity, Veracity, Variety,
and Value), and how network bandwidth becomes a bottleneck in
processing a massive amount of data. The second lecture of this
module discusses the Google File System (GFS) paper [18] and
its open source counterpart, the Hadoop Distributed File System
(HDFS) [39]. Attention is paid to the concept of data locality to
reduce network traffic as well as the emphasis on failure recovery
and resiliency in big data infrastructures. We havemultiple-choice
quizzes that assess students on these concepts but no assignment
for this module.

3.5. Module 5: MapReduce programming paradigm

The design of GFS/HDFS does not support standard point-
to-point communication. Collective communication is facilitated
without manual management from programmers. As a result, the
standardMPI programming paradigm does not work, and students
are introduced to a new programming paradigm, MapReduce [13].

Previously, there were two infrastructures that could be lever-
aged to teach MapReduce at Clemson University. The first was a
16-node persistent Hadoop infrastructure accessible only through
a dedicated user node and networked with the existing Palmetto
cluster. The infrastructure supported several regular users, which
made it only suitable for a half-day MapReduce workshop with
a small number of attendees. Academic courses relied on an ex-
tended implementation of myHadoop [23] to facilitate the de-
ployment of dynamic Hadoop clusters on Clemson University’s
Palmetto Supercomputer for students in the class. For the half-
day workshops, Python and Jupyter were already used to teach
MapReduce concepts, but attendees were required to launch a
local Jupyter server from their allocated resource on Palmetto
and then access that server via X11 tunneling. For the modules
taught in academic courses, students are used to Java as the default
language; however, much effort is spent writing, compiling, and
debugging Java programs. The important MapReduce workflows
are often obscured within a larger amount of boiler-plate code
overhead required when working with Java.

The unifying framework has enabled the consolidation of
MapReduce-related contents for both the half-day workshop and
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Fig. 6. Running a simple parallel program on Jupyter Notebook.

academicmodules. Through the new Jupyter interface, the content
of this MapReduce module has been developed [10] based on
previous work [29] and converted to Python. Python’s map and
reduce functions are used to explain the concepts in MapReduce.
The development of MapReduce workflows is demonstrated by
leveraging Hadoop Streaming, where mapper and reducer tasks
can be implemented as Python scripts. To eliminate redundant
creation of sampling data, which is typically the casewhen Python-
based implementations of mappers and reducers are to be tested
in isolation on non-Hadoop platforms, Hadoop’s hdfs dfs -cat
command and Linux’s pipe (|), sort, and head calls are utilized.
Through this combination, we can demonstrate the creation of
Key/Value pairs, sorting of the pairs, and final reduction of values
belonging to the same keys. The final validation on the Hadoop
infrastructure is straightforward because the Python scripts can
be reused as is by Hadoop’s yarn jar hadoop-streaming.jar call as
mapper and reducer functions. Fig. 7 shows an example Jupyter
notebook where students can perform a correctness test by using
grep on the mapping phase and then validate the results with the
outcomes after the reducing phase.

The contents for thismodule are developed inside Jupyter note-
books, enabling seamless transitions between lecture notes and
code examples. The notebooks allow students to follow instruc-
tions, observe live output recorded in thenotebooks, and repeat the
steps on their own. One important challenge in working with the
Hadoop-based platform is learning how to debug error messages
which are often hidden within a massive amount of log informa-
tion. Analyzing MR logs in a traditional command-line setting is
nearly impossible due to the typical length of the logs, which are
often automatically scrolled off screen. A notebook’s cell can enable
scrolling for its outputwindows, allowing instructors to slowly and
methodically go through contents of the log and show students
where to find the relevant error messages and how to interpret
them. This is demonstrated in Fig. 8.

The assignment for this module reuses the Google Trace Data
and the questions of the MPI module; however, students are
required to implement the solutions using the MapReduce pro-
gramming paradigm. This serves two purposes. First, students will
be able to apply their understanding about MapReduce in actual
coding practice. Second, this highlights the trade-offs between

message passing and MapReduce: more convenient programming
capability at the loss of communication and workflow control. The
second stage of the semester project is also assigned at the end of
this module. Each team is tasked with creating a mock-up design
of their assigned cluster computing site and deploy this design
on CloudLab. Typical components of a cluster of computers are
required. These include a login node, a set of computing nodes, a
NFS server to support a shared /home file system, and a parallel file
system. For the parallel file system, each team is required to install
and configure the corresponding file system used at their assigned
site. The teams are expected to automate the deployment process
via Python scripts that use CloudLab’s geni-lib, an open source
Python library. Through this stage, students become familiar with
the administrative side of PDC, including design, deployment, and
configuration of PDC systems.

3.6. Module 6: parallel I/O and cluster scheduling

This module contains two lectures focusing on parallel I/O for
MPI and scheduling of computing clusters. We consider the topic
of cluster scheduling to be more appropriate, and parallel I/O can
be an optional part of this specific course because parallel I/O for
MPI is considered an advanced topic that is covered in another
technical elective course focusing entirely on MPI programming.
This technical elective course is cross-listed for both the depart-
ments of Electrical and Computer Engineering (ECE) and School of
Computing (SoC) at Clemson University. As a result, we pay more
attention to aspects of job scheduling, a critical component of any
large-scale computing cluster. These lectures also provide students
with the background knowledge to implement an optional stage of
the semester project, which is to install and configure the sched-
uler used by the assigned site. Examples of schedulers set up by
teams include PBS [19], SLURM [43], and Moab [14].

3.7. Module 7: in-memory distributed computing

This module consists of one lecture and two hands-on labs.
In the previous transition between the MPI and MapReduce lec-
tures, we demonstrated how real world demand for big data
processing has led to new PDC infrastructures and programming



208 L.B. Ngo et al. / J. Parallel Distrib. Comput. 118 (2018) 201–212

Fig. 7. Execution of Linux commands inside Jupyter notebook to validate implementations of mapper and reducer via HDFS data pipelining.

Fig. 8. A Hadoop MapReduce log is filtered to remove redundant INFO messages, and the remaining contents are scrollable within Jupyter notebooks’ output cell, showing
the specific error.
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paradigms. Similarly, the lecture on in-memory distributed com-
puting demonstrates how demands for faster big data processing
and more complex workflows have led to various technological
advances in PDC. The first half-step is Tez [38], a framework that
supports chaining multiple MapReduce jobs together to improve
complexity and avoid overhead in writing intermediate data to
hard drives. Next, Spark [44] and its successor, Tachyon [25] com-
pletely re-implement the MapReduce programming paradigm to
take advantage of in-memory distributed processing.

First presented at USENIX in 2010, Spark was created to ad-
dress a subset of data flow programming applications that are
not suitable to be implemented in Hadoop MapReduce: iterative
jobs and interactive analytics. The strength of Spark comes from
its design and implementation of resilient distributed datasets
(RDD), immutable data structures that are distributed across a
cluster. The core libraries of Spark allow users to invoke parallel
operations such as map, reduce, join, and filter on the RDDs. RDDs
can be cached in memory, resulting in significant improvement in
performance for iterative and interactive operations. At the same
time, operations on a RDD can be lazily evaluated and the lineage of
operations is maintained. This helps with reducing memory usage
and ensuring the ability to recreate RDDs in the event of system
failures. The potential of Spark as a big data analytics programming
framework has since been recognized by academia and industry,
with the open source version quickly becoming a top-level Apache
Software Foundation project [4].

We first introduced in-memory distributed computing into the
materials covered in CPSC 3620 as a single lecture in Fall 2014.
Since Spring 2015, a full module with one lecture and one lab has
been included in the curriculum for the class. In Spring 2015 and
Fall 2015, the Spark lab has been taught using Scala, the native
language API for Spark. While both Java and Python APIs of Spark
have been available during the aforementioned time periods, the
lack of overhead boiler-plate code and the interactive capability
and maturity of the Spark shell, written in Scala, reduces the steps
needed for lab exercises and technical support. On the other hand,
as Scala is a new programming language that is not taught in the
standard computer science curriculum,we cannot justify assigning
students any significant homework assignments. In Spring 2016,
wemade the transition to using Spark’s Python API in combination
with a single-user version of Jupyter. Leveraging Spark’s integra-
tion into Hadoop YARN, the students could reuse the dynamic
Hadoop deployment on Palmetto [29] and spawn a Jupyter note-
book with a Spark kernel which connected to a Spark cluster on
top of the dynamic Hadoop cluster. To interact with the notebook,
the students needed to launch a browser from inside Palmetto via
X11 tunneling. The combination of the Python API and Jupyter
allowed for a more intuitive and understandable demonstration
of programming flows. The technical aspects of setting up X11
tunneling and correct creation of the Spark kernels in Jupyter took
up a significant portion of the lab, resulting in two lab sessions
instead of one.

With the addition of the JupyterHub interface on Palmetto,
we retain the ability to teach Spark in an interactive manner via
Python while not having to deal with the issue of setting up an
individual Jupyter server for each student. As the demonstration
tools and labs become more streamlined, more content has been
added to the module, assisting with the teaching of concepts such
as data lineage, immutability, lazy-evaluation, and storage level.
Similar to MPI and Hadoop MapReduce, Jupyter notebooks allow
the integration of lecture contents with interactive code, as shown
in Fig. 9.

The assignment of this module once again reused the Google
Trace Data and the question set from the previous assignments.
Students now can clearly see the advantage of having a more
flexible MapReduce workflow and faster computing time due to

in-memory processing. At the same time, they learn to struggle
with requesting enough compute nodes to accommodate the re-
quired memory space. This set of assignments that use different
programming paradigms to solve the same problem also serves to
remind students to not become attached to a specific technological
solution but to pick the right tools for the job at hand.

3.8. Module 8: other PDC infrastructures

At this time in the semester, we plan to leave students more
time to work on the third stage of the team project, which is to
correct misconfiguration from the second stage, perform evalua-
tion and validation on the final cluster deployment, and write the
final report. As a result, this module covers lectures on various PDC
infrastructures and concepts but has no assignment.

The first lecture in this module discusses HPCCSystems, a
proprietary-turned-open-source data processing framework [27].
HPCCSystems also supports big data processing using data locality
I/O, but it focuses specifically on enterprise data, which are typi-
cally structured tabular formats. HPCCSystems has the same set of
functional components as Hadoop. In this lecture, students observe
how the concept of data locality can be implemented in a different
approach, and how usability and functionality of HPCCSystems
come at the cost of fault-tolerance and reliability. This lecture also
comeswith a hands-on lab. In previous semester, we had to rely on
an educational allocation fromHPCCSystems’ parent company due
to difficultywhen trying to deployHPCCSystems in Palmetto’s user
space [30]. With the framework, students are able to deploy their
individual HPCCSystems clusters on CloudLab via Python scripting.

In the second lecture, we discuss a middleware infrastructure
that is related to the velocity characteristics of big data: message-
oriented middleware. Students understand the upcoming deluge
of data due to streaming sensors and theneed tohave an infrastruc-
ture that can quickly deliver streams of data to processing centers.
Attributes such as coupling, scalability, availability, and reliability
are discussed regarding different approaches to message-oriented
middleware implementations.

The third lecture discusses PDC approaches to processing
streaming data in real time. Here, we demonstrate Spark’s abil-
ity to support real-time/near-real-time data processing due to its
in-memory design. Students are introduced to concepts such as
mobility, availability, processing guarantee, partitioning, query-
ing, deterministic versus non-deterministic processing, storage,
and handling of imperfect data. Students also learn about the
lambda architecture [26] where streaming processing and large-
scale batch computation are combined into a distributed infras-
tructure.

Finally, students are introduced to the concepts of cloud com-
puting. They will have a chance to understand the nuisance of
setting up an infrastructure such as CloudLab which allows users
to quickly deploy computing clusters on remote hardware compo-
nents using virtual images.

4. Results and feedback

In this section, we discuss the performance and feedback from
students and instructors about the usage of the unifying frame-
work in several workshops and academic courses. The academic
courses are offered during Fall 2016 (36 students) and Spring 2017
semesters (60 students). More than a dozen workshops have been
offered during this time period; each workshop had an average of
20 participants.

As discussed in Section 2, the JupyterHub server acts as a proxy
from which users can specify resource requirements and submit
allocation requests to the Palmetto Supercomputer. The actual
Jupyter NBS is only launched after the allocation is granted, and
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Fig. 9. Interleaving Spark’s storage level concept with code demonstration in Jupyter notebook.

the NBS instance resides on the allocated compute node. As a
result, the JupyterHub and proxy servers are unlikely to suffer from
overloading if many users attempt to connect at the same time,
which is the typical case in a classroom setting. The infrastructure
currently supports 334 users (out of approximately 800 active ac-
counts on the Supercomputer), and there are approximately thirty
to forty active Jupyter servers running at any give time. During Fall
2016, when the class had the highest enrollments (65 students),
we had in-class lab sessionswhere all students were able to deploy
concurrent Jupyter servers without any performance degradation
on the system. For institutions without local research computing
access, the Jetstream resource of XSEDE provides virtual images
with support for Jupyter servers and other educational tools at
scale [16].

JupyterHub has been used as a regular teaching platform for
CPSC3620 since the beginning of the Fall 2016 semester,withmore
than forty students utilizing the platform to interactwith Palmetto.
Feedback from students and instructors has been positive. The
most significant impact that comes from using JupyterHub is the
disappearance of technical issues due to variation in students’
computing devices. This allows instructors to spendmore time lec-
turing and less time debugging. Students do not feel frustrated as
they did previously when they were not able to get coding instruc-
tions to work properly on their own computers. In fact, additional
content has been added to several workshops (debugging tech-
niques for Hadoop MapReduce and SQLContext for Apache Spark)
without increasing workshop duration because of the significant
reduction in time overhead. While transitioning to teaching MPI
and Hadoop in Python requires the redevelopment of materials,

this effort is manageable as Python only acts as a wrapper and the
Python syntax closely mirrors the native languages’ counterparts.
It has been found that all PDC concepts such as deadlocks, speedup,
horizontal/vertical scaling, scheduling, broadcast trees, and peer-
to-peer communication covered in previous semesters can still be
taught and demonstrated in the new versions of the lectures. The
integration of the RISE plugin [6] has beenwell received by instruc-
tors, as it lets instructors create highly interactive notebooks that
are essentially slide decks that seamlesslyweave between live code
demonstrations and theoretical lecture notes.

All students have responded positively to having Palmetto and
CloudLab for this course, citing the ability to work with realistic
research computing environments. During Spring 2017, we have
provided students with anonymous entry and exit surveys. The
first set of questions ask students to rank their comfortability with
various PDC tools and technologies in the class between 1 and 10,
with 1 being not comfortable at all and 10 beingmost comfortable.
We use this term to replace terms such as ‘‘level of proficiency’’
and ‘‘level of expertise’’ when asking students to self-assess their
technical capabilities in entry and exit surveys. This decision is
supported by findings from previouswork that examines students’
self-assessment skill. For example, it has been shown that the level
of self-assessment carries a ‘‘weak to moderate accuracy’’ and that
this accuracy correlateswith students’ academic performance [24].
As the course is required, all students must register. As a result,
thewide range of students’ academic competencieswill negatively
influence this accuracy level. While the class is attended mostly
by seniors, it has been demonstrated that self-assessment accuracy
has not improved over time [15]. Furthermore, it is unrealistic to
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Table 1
Degree of comfortability at the beginning and at the end of Spring 2017.

PDC Tools/Concepts Begin End

Python 4.00 6.40
Linux 7.38 7.84
Parallel Programming 3.53 5.82
MPI 1.72 5.38
MapReduce 1.35 6.21
Spark 1.25 4.61

expect significant improvements in students’ technical expertise,
especially given the complexity of materials covered in this class.
Therefore, instead of ‘‘expertise’’ or ‘‘proficiency’’, we use the term
‘‘comfortability’’ to ask the students to measure how comfortable
they are in their interaction with a specific technology. How com-
fortable students are with certain technologies can be interpreted
as the ease at which students approach these technologies for
learning purposes. The averaged responses regarding degree of
comfortability are shown in Table 1. The responses demonstrate a
clear improvement in students’ affinity toward MPI, MapReduce,
Spark, and parallel programming in general. Having Python as
the primary language throughout the course also leads to im-
provement. Most students seem to be comfortable with the Linux
environment, and throughout the course, their comfort level only
improves slightly.

The introductory survey also asks students to describe their
experience working with clusters of computers. Out of all the
responses, 14% have only used single workstations, 64% have used
a single compute node that is part of a cluster via a Linux terminal,
19% have deployed software on multiple machines that are part of
the same network, 2% have administered a network of computers,
and 2% have deployed, configured, and administered a network
of computers in a production environment. Given this lack of
previous expertise, the usage of CloudLab in the semester project
to design and deploy a cluster of computers has provided positive
impacts on students. The exit survey shows that most students
participate in the design and deployment of the cluster over the
stages of the project. Only 5 students chose to work with research
and documentation, and 3 students limited their participation to
running test codes on the final cluster. Regarding the difficulty of
the project, only 5 students thought the project was too difficult,
while 37 thought the project required significant contribution from
all members, and 15 thought it was just the right size for a team
project. Most students also thought that using CloudLab and Pal-
metto can benefit other CS courses such as networking, operating
systems, Linux administration, computer security, and software
engineering. There were complaints, but they mainly concerned
difficulties in applying PDC concepts and learning new technolo-
gies, and we have not received any complaints about being unable
to utilize computing resources and the Jupyter interface of the
framework.

Other feedback about the framework comes from guest lectures
for advanced undergraduate/graduate classes that use new con-
tent and lecturing methods based on JupyterHub. In these cases,
students that have taken CPSC 3620 in previous semesters ex-
pressed disappointment that the tools were not available to them
before. The participants of the half-day workshops on MPI and
Hadoop are mainly graduate students with non-computer science
backgrounds, and they are able to quickly navigate the platform
and perform exercises, even for those who have had little to no
exposure to Linux and Python. Similarly, undergraduate students
in CPSC 3620 are able to utilize the platform to connect to the
Palmetto Supercomputer and to write and submit jobs to the
supercomputer.

5. Conclusion and future work

We have deployed a unifying educational framework that com-
bines on-site and remote computing resources with a common
web-based access interface to provide a seamless approach to
working with large-scale computing resources. Leveraging this
framework, we have been able to utilize Python and its various
collections of wrapper libraries to create a common platform upon
which various PDC concepts and technologies can be taught. This
allows students to focus more on the underlying principles rather
than the complexity of various technologies. The feedback from
instructors and students using the platform have been positive
due to the new advantages such as reduction in required technical
support, streamlined syntaxes, and the ability to create lecture
slides with an embedded live coding interface for Jupyter note-
books. One important thing about our framework is that it can still
work for institutions that do not have on-site computing resources.
In this case, the JetStream site of XSEDE can provide a produc-
tion cloud-based environment to host virtual machines with the
Jupyter server software already installed and enabled. Instructors
can leverage this cloud-based Jupyter interface to interact with
other XSEDE resources (instead of having an on-site resource like
Palmetto) and CloudLab.

Leveraging this framework, we demonstrate the ability to de-
liver a set of comprehensive educational modules describingmost,
if not all, critical aspects of parallel and distributed computing
within the scope of a single academic course. The amount of
knowledge covered is significant, and is only possible through the
support of this framework. Through publicly available comput-
ing resources and open source software, this framework can be
recreated at any academic institution, enabling complete or in-part
adoption of the course’s content.

A limitation of this work is the scarcity of quantitative mea-
surements of students’ skill improvements. Since the course is
a required junior-level class, by the time students register for
the course, most, if not all of them have built up their specialty
that might not provide an adequate technical foundation for this
course. Therefore, assessments through assignments, exams, and
other summative methods can unfairly represent those that are
not interested in a career path that involves distributed systems.
In future work, we will explore the concept of ‘‘comfortability’’
from the perspective of the connectivism theory of learning [22].
All materials, including lectures and assignments, are made avail-
able online through a GitHub repository [28]. As the modules are
updated frequently to keep up with changes in PDC technologies,
the master branch of this repository contains the latest version,
while the other branches store materials from previous semesters.

Acknowledgments

We are grateful for the support from NSF MRI Award #
1228312.Wewould like to acknowledge the assistance fromCorey
Ferrier and Xizhou Feng, Clemson Computing and Information
Technology, in setting up and maintaining the hardware for
JupyterHub. We also appreciate technical assistance from Carol
Willing, Michael Milligan, andMin Ragan-Kelley of Project Jupyter.

References

[1] ApacheHadoop, ApacheHadoop Source Code Repository, 2016. https://github.
com/apache/hadoop-common.

[2] Apache Hadoop 2.0: YARN (Yet Another Resource Negotiator), 2013. hadoop.
apache.org/docs/current2/hadoop-yarn.

[3] Apache HBase, 2013, http://hbase.apache.org.
[4] Apache Spark, Lightning-Fst Cluster Computing, 2016. http://spark.incubator.

apache.org.
[5] Apache Tez, A framework for near real-time big data processing, 2013. http:

//hortonworks.com/hadoop/tez.

https://github.com/apache/hadoop-common
https://github.com/apache/hadoop-common
https://github.com/apache/hadoop-common
http://hadoop.apache.org/docs/current2/hadoop-yarn
http://hadoop.apache.org/docs/current2/hadoop-yarn
http://hadoop.apache.org/docs/current2/hadoop-yarn
http://hbase.apache.org
http://spark.incubator.apache.org
http://spark.incubator.apache.org
http://spark.incubator.apache.org
http://hortonworks.com/hadoop/tez
http://hortonworks.com/hadoop/tez
http://hortonworks.com/hadoop/tez


212 L.B. Ngo et al. / J. Parallel Distrib. Comput. 118 (2018) 201–212

[6] D. Avila, Reveal.js - Jupyter/IPython SlideshowExtension, 2016. https://github.
com/damianavila/RISE.

[7] M. Berman, J.S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri, R.
Ricci, I. Seskar, GENI: A federated testbed for innovative network experiments,
Comput. Netw. 61 (2014) 5–23.

[8] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner, M. Haupt, P. Hinsbeeck,
Strategies for preparing computer science students for the multicore world.
In: Proceedings of the 2010 ITiCSE Working Group Reports, 2010.

[9] R.M. Butler, R.E. Eggen, S.R. Wallace, Introducing parallel processing at the
undergraduate level, in: ACM SIGCSE Bulletin, vol. 20, ACM, 1988, pp. 63–67.

[10] Clemson CITI, Introduction to Hadoop, 2016. http://clemsonciti.github.io/
hadoop-python-01-workshop/.

[11] Cyberinfrastructure and Technology Integration, 2017. https://github.com/
clemsonciti.

[12] L. Dalcin, MPI for Python 2.0.0 Documentation, 2016. https://pythonhosted.
org/mpi4py/usrman/tutorial.html.

[13] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clus-
ters, Commun. ACM 51 (1) (2008).

[14] Y. Etsion, D. Tsafrir, A Short Survey of Commercial Cluster Batch Sched-
ulers, School of Computer Science and Engineering, the Hebrew University of
Jerusalem 44221, 2005, 2005–13.

[15] K.W. Eva, J.P. Cunnington, H.I. Reiter, D.R. Keane, G.R. Norman, HowCan I Know
What I Don’t Know? Poor Self Assessment in a Well-defined Domain, Adv.
Health Sci. Educ. 9 (3) (2004) 211–224.

[16] J. Fischer, D.Y. Hancock, J.M. Lowe, G. Turner, W. Snapp-Childs, C.A. Stewart,
Jetstream: A cloud system enabling learning in higher education communities,
in: Proceedings of the 2017 ACM Annual Conference on SIGUCCS, ACM, 2017,
pp. 67–72.

[17] P. Garrity, T. Yates, R. Brown, E. Shoop, WebMapReduce: An accessible and
adaptable tool for teaching map-reduce computing, in: Proceedings of the
ACM SIGCSE, 2011.

[18] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google File System, in: ACM SIGOPS
Operating Systems Review, 2003.

[19] R.L. Henderson, Job scheduling under the portable batch system, in: Workshop
on Job Scheduling Strategies for Parallel Processing, Springer, 1995,
pp. 279–294.

[20] IPython Parallel, Using IPython for Parallel Computing, 2009. https://github.
com/ipython/ipyparallel.

[21] D.A. Joiner, P. Gray, T. Murphy, C. Peck, Teaching parallel computing to science
faculty: best practices and common pitfalls, in: Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, 2006.

[22] M. Kathleen Dunaway, Connectivism: Learning theory and pedagogical prac-
tice for networked information landscapes, Ref. Serv. Rev. 39 (4) (2011)
675–685.

[23] S. Krishnan, M. Tatineni, C. Baru, myHadoop - Hadoop-On-Demand on Tradi-
tional HPC Resources, San Diego Supercomputing Center, 2011.

[24] M.D. Lew, W. Alwis, H.G. Schmidt, Accuracy of students’ self-assessment and
their beliefs about its utility, Assessment Eval. Higher Educ. 35 (2) (2010)
135–156.

[25] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, I. Stoica, Tachyon: Reliable, memory
speed storage for cluster computing frameworks, in: Proceedings of the ACM
Symposium on Cloud Computing, ACM, 2014, pp. 1–15.

[26] N. Marz, J. Warren, Big Data: Principles and Best Practices of Scalable Realtime
Data Systems, Manning Publications Co., 2015.

[27] A. Middleton, P. Solutions, HPCC systems: Introduction to HPCC (high-
performance computing cluster), White Paper, LexisNexis Risk Solutions,
2011.

[28] L.B. Ngo, CPSC 3620: Distributed and Cluster Computing, 2017. https://github.
com/linhbngo/cpsc-3620.

[29] L.B. Ngo, E.B. Duffy, A.W. Apon, Teaching HDFS/MapReduce systems concepts
to undergraduates, in: Parallel & Distributed Processing Symposium Work-
shops, IPDPSW, 2014 IEEE International, IEEE, 2014, pp. 1114–1121.

[30] L.B. Ngo, M.E. Payne, F. Villanustre, R. Taylor, A.W. Apon, Dynamic provi-
sioning of data intensive computing middleware frameworks: A case study,
in: Proceedings of the 1st Workshop on the Science of Cyberinfrastructure:
Research, Experience, Applications and Models, ACM, 2015, pp. 3–10.

[31] E. Orozco, R. Arce-Nazario, J. Ortiz-Ubarri, H. Ortiz-Zuazaga, A curricular
experience with parallel computational thinking: A four years journey,
in: EduPDHPC. Workshop on Education for High Performance Computing,
2013.

[32] J. Ortiz-Ubarri, R. Arce-Nazario, Modules to teach parallel computing using
python and the littlefe cluster, in: The Int. Conference for High Performance
Computing, Networking, Storage and Analysis, 2013.

[33] S.K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja, K. Kant, A.L.
Salle, R. LeBlanc, A. Lumsnaide, D. Padua, M. Parashar, V. Prasanna, Y. Robert,
A. Rosenberg, S. Sahni, B. Shirazi, A. Sussman, C. Weems, J. Wu, NSF/IEEE-TCPP
Curriculum Initiative on Parallel and Distributed Computing - Core Topics for
Undergraduates, 2017 http://www.cs.gsu.edu/~tcpp/curriculum/index.php.

[34] Project Jupyter, IPython Kernels for Other Languages, 2016. https://github.
com/ipython/ipython/wiki/IPython-kernels-for-other-languages.

[35] Project Jupyter, JupyterHub, 2016. https://github.com/jupyterhub/jupyterhub.
[36] C. Reiss, J. Wilkes, J.L. Hellerstein, Google Cluster-usage Traces: Format+

Schema, Google Inc., White Paper, 2011, pp. 1–14.
[37] R. Ricci, E. Eide, Introducing cloudlab: Scientific infrastructure for advancing

cloud architectures and applications, Login:Mag. USENIX& SAGE 39 (6) (2014)
36–38.

[38] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, C. Curino, Apache Tez:
A unifying framework for modeling and building data processing applications,
in: Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, ACM, 2015, pp. 1357–1369.

[39] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file
system, in: Mass Storage Systems and Technologies, MSST, 2010 IEEE 26th
Symposium on, IEEE, 2010, pp. 1–10.

[40] T. Sterling, D. Becker,M.Warren, T. Cwik, J. Salmon, B. Nitzberg, An Assessment
of beowulf-class computing for NASA requirements: Initial findings from the
first NASA workshop on beowulf-class clustered computing, in: Aerospace
Conference, 1998 IEEE, vol. 4, IEEE, 1998, pp. 367–381.

[41] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V.
Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, et al., XSEDE: Accelerating
scientific discovery, Comput. Sci. Eng. 16 (5) (2014) 62–74.

[42] G.Wolffe, C. Trefftz, Teaching parallel computing: Newpossibilities, J. Comput.
Sci. Coll. 25 (1) (2009) 21–28.

[43] A.B. Yoo,M.A. Jette,M. Grondona, Slurm: Simple linux utility for resourceman-
agement, in: Workshop on Job Scheduling Strategies for Parallel Processing,
Springer, 2003, pp. 44–60.

[44] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster
computing with working sets, HotCloud 10 (2010) 10–10.

Linh Bao Ngo received the Ph.D. degree in Computer Sci-
ence & Engineering from University of Arkansas of Fayet-
teville in 2012. After graduation, Dr. Ngo was a Research
Associate at the Big Data Systems Lab, Computer Science
Division at Clemson University, where he also served as
the Deputy Lab Director until 2015 and subsequently be-
came a research assistant professor for the Computer Sci-
enceDivision. Dr. Ngo’s research focus is on the design, de-
ployment, analysis and evaluation of distributed systems
and big data system infrastructures and computer science
education. Since November 2015, Dr. Ngo has also been

appointed as theDirector of Data Science at the Cyberinfrastructure and Technology
Integration Group at Clemson University.

Ashwin Shrinath holds a Master degree in Mechanical
Engineering from Clemson University. He is also a certi-
fied instructor for Software Carpentry and Data Carpentry.
Shrinath is currently working as a research facilitator for
the Cyberinfrastructure and Technology Integration (CITI
group) at Clemson University.

Jeffrey Denton holds a Bachelor of Science degree in
Computer Science from Clemson University. Since 2015,
Denton has worked as a research facilitator for the Cy-
berinfrastructure and Technology Integration (CITI group)
at Clemson University. He also works as a consultant for
Omnibond, the company behind the open-source parallel
file system OrangeFS.

Marcin Ziolkowski received his Ph.D. degree in Chemistry
from Northwestern University in 2013. He became a re-
search facilitator at the Cyberinfrastructure and Technol-
ogy Integration group at Clemson University in 2014 and
was appointed Interim Director in 2016. Dr. Ziolkowski is
interested in advancing computational sciences via design
and installation of advanced cyberinfrastructure and sup-
port of high performance computing education.

https://github.com/damianavila/RISE
https://github.com/damianavila/RISE
https://github.com/damianavila/RISE
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb7
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb7
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb7
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb7
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb7
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb9
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb9
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb9
http://clemsonciti.github.io/hadoop-python-01-workshop/
http://clemsonciti.github.io/hadoop-python-01-workshop/
http://clemsonciti.github.io/hadoop-python-01-workshop/
https://github.com/clemsonciti
https://github.com/clemsonciti
https://github.com/clemsonciti
https://pythonhosted.org/mpi4py/usrman/tutorial.html
https://pythonhosted.org/mpi4py/usrman/tutorial.html
https://pythonhosted.org/mpi4py/usrman/tutorial.html
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb13
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb13
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb13
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb15
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb15
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb15
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb15
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb15
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb16
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb19
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb19
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb19
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb19
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb19
https://github.com/ipython/ipyparallel
https://github.com/ipython/ipyparallel
https://github.com/ipython/ipyparallel
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb22
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb22
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb22
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb22
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb22
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb23
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb23
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb23
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb24
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb24
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb24
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb24
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb24
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb25
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb25
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb25
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb25
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb25
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb26
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb26
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb26
https://github.com/linhbngo/cpsc-3620
https://github.com/linhbngo/cpsc-3620
https://github.com/linhbngo/cpsc-3620
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb29
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb29
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb29
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb29
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb29
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb30
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb31
http://www.cs.gsu.edu/%7Etcpp/curriculum/index.php
https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages
https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages
https://github.com/ipython/ipython/wiki/IPython-kernels-for-other-languages
https://github.com/jupyterhub/jupyterhub
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb37
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb37
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb37
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb37
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb37
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb38
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb39
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb39
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb39
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb39
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb39
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb40
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb41
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb41
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb41
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb41
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb41
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb42
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb42
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb42
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb43
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb43
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb43
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb43
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb43
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb44
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb44
http://refhub.elsevier.com/S0743-7315(18)30098-4/sb44

	Unifying computing resources and access interface to support parallel and distributed computing education
	Introduction
	Unifying computing resources and access platforms
	On-site computing resource: Palmetto cluster and Cypress cluster
	Remote cloud resource: CloudLab
	Access platform: Jupyter server
	Deployment design
	User interaction


	PDC course modules using unifying framework's resources
	Module 1: introduction to parallel and distributed computing
	Module 2: introduction to parallel and distributed file systems
	Module 3: introduction to MPI using python
	Module 4: big data and data intensive computing
	Module 5: MapReduce programming paradigm
	Module 6: parallel I/O and cluster scheduling
	Module 7: in-memory distributed computing
	Module 8: other PDC infrastructures

	Results and feedback
	Conclusion and future work
	Acknowledgments
	References


